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Outline
• Some philosophy about performance 

modeling
– What is it exactly and how can it be useful?

• An update on the state-of-performance 
modeling
– Where do we (particularly PERC and 

collaborators including HPCMP stand 
today and where are we going?)

• Some results – performance sensitivity 
of HPC applications
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What is a performance model?

• A performance model is not…(a lot of things 
that get confounded with one)

• A performance model is…
– A calculable explanation of why a {program, 

application,input} tuple performs as it does
• Should yield a prediction (quantifiable 

objective)
• Performance models embody understanding 

of the factors that affect performance
– Inform the tuning process (of application and 

machine)
– Guide applications to the best machine
– Enable applications driven architecture design
– Extrapolate to the performance of future systems
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Goals for performance modeling tools 
and methods

• Generation of performance models 
should be automated, or at least as 
regular and systemized as possible

• Performance models must be time-
tractable 

• Error is acceptable if it is bounded and 
allows meeting these objectives

San Diego Supercomputer Center

Performance Modeling and Characterization LabPMaC
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A Road Map to Ubiquitous 
Performance Modeling 

• Research to develop methods
– Results exhibited via “proof-of-principle”

• Hardening 
– Modeling studies of full HPC applications

• Tool-making to render modeling 
ubiquitous
– Overhead of tools must be light and recipe 

for using them very clear

We are here

San Diego Supercomputer Center

Performance Modeling and Characterization LabPMaC
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Where Modeling Fits In
– The HPCMP procurement process

• Identification of strategic applications (program 
level)

• Extraction of typical calculations (benchmarking 
team)

• Gathering application signatures of typical 
calculations (PMaC, benchmarking team, end-
users)

• Profiling candidate machines (PMaC, 
Instrumental)

• Modeling
• Assigning weights (Cray, Larry) and solving an 

optimization problem (Bill Ward)

San Diego Supercomputer Center

Performance Modeling and Characterization LabPMaC
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A useful framework
• Machine Profiles - characterizations of the rates at 

which a machine can (or is projected to) carry out 
fundamental operations abstract from the particular 
application.

• Application Signature - detailed summaries of the 
fundamental operations to be carried out by the 
application independent of any particular machine.

Combine Machine Profile and Application Signature 
using:

• Convolution Methods - algebraic mappings of the 
Application Signatures on to the Machine profiles to 
arrive at a performance prediction.

San Diego Supercomputer Center

Performance Modeling and Characterization LabPMaC
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Developing the Framework
• Work in the first year was focused 

primarily on instantiating the framework 
– Results were cast primarily in terms of 

predication accuracy (to validate models) 
and were applied first to kernels (ie.
PETSc, NPB, TableToy), then mini and 
synthetic apps. (i.e synNLOM)  then full 
applications (i.e. POP, Cobalt)

– Along the way research was advanced in 
reducing tracing time, improving granularity 
of models, and validating the underlying 
convolutions

San Diego Supercomputer Center

Performance Modeling and Characterization LabPMaC
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Technology improvements
to render full HPC applications modeling tractable

Practically, we have found techniques for generating approximated traces via sampling can reduce 
tracing time while preserving reasonable trace fidelity [1]. Also we found that representing traces by a 
dynamic CFG decorated with instructions (especially memory instructions) characterized by memory 
access pattern can reduce the size of stored trace files by three orders of magnitude [2]. These 
improvements in the space and time required for tracing have now rendered full-application modeling 
tractable. In some cases it is possible to obtain reasonably accurate traces and resulting performance 
models from 10% or even 1% sampling with little slowdown of the instrumented program vs. un-
instrumented execution. 

1.  L. Carrington, A. Snavely, N. Wolter, X. Gao, “A Performance Prediction Framework for Scientific 
Applications”, Workshop on Performance Modeling and Analysis - ICCS, Melbourne, June 2003 

 
2.  X. Gao, A. Snavely, “Exploiting Stability to Reduce Time-Space Cost for Memory Tracing”, Workshop on 

Performance Modeling and Analysis - ICCS, Melbourne, June 2003 
 

Porting to DynINST API enabled low-overhead tracing 
via sampling

Papers available at www.sdsc.edu/PMaC

San Diego Supercomputer Center

Performance Modeling and Characterization LabPMaC
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POP
Parallel Ocean Program

Table 2: Real versus Predicted-by-Model Wall-clock Times for POP x1 Benchmark 
X1 at 16 processors real time 9.21 seconds, predicted time 9.79 seconds, error 6.3% 

Blue Horizon Lemieux # of pe’s 

Real 
Time(sec) 

Predicted 
Time(sec) 

Error Real 
Time(sec) 

Predicted 
Time(sec) 

Error 

16 204.92 214.29 -5 % 125.35 125.75 0 % 
32 115.23 118.25 -3 % 64.02 71.49 -11 % 
64 62.64 63.03 1 % 35.04 36.55 -4 % 
128 46.77 40.60 13 % 22.76 20.35 11 % 

 Longhorn Seaborg # of pe’s 

Real 
Time(sec) 

Predicted 
Time(sec) 

Error Real 
Time(sec) 

Predicted 
Time(sec) 

Error 

16 93.94 95.15 -1 % 204.3 200.07 2 % 
32 51.38 53.30 -4% 108.16 123.10 -14% 
64 27.46 24.45 11% 54.07 63.19 -17% 
128 19.65    15.99 16%% 45.27 42.35 6 % 

 

POP has  been  por ted  to  a  wide  var ie ty  of  computers  for  
e d d y-resolving s imulat ions  of  the  world  oceans  and for  
c l imate  s imula t ions  as  the  ocean component  of  coupled  
c l imate  models .   

San Diego Supercomputer Center

Performance Modeling and Characterization LabPMaC
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POP

• Seconds per simulation day

POP Total Timings POP 1.4.3, x1 benchmark
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Figure 2: Real (R ) versus Predicted-by Model (M) Times for POP x1 Benchmark 

San Diego Supercomputer Center
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Explaining Relative Performance of POP
?? In Case 1, we model the effect of reducing the bandwidth of BH’s network to that of a single rail 

of the Quadrics switch. There is no discernable performance effect as the POP x1 problem at this 
size is not sensitive to a change in peak network bandwidth from 350MB/s to 269 MBs. 

?? In Case 2 we model the effect of replacing the Colony switch with the Quadrics switch. There is a 
significant performance improvement due to the 5 ?s latency of the Quadrics switch versus the 19
? s latency of the Colony switch. This is because the barotropic calculations in POP x1 at this size 
are latency sensitive. 

?? In Case 3 we use Quadrics latency but Colony bandwidth just for completeness. 
?? In Case 4 we model keeping the Colony switch latencies and bandwidths but replacing the Pwr3

processors and local memory subsystem with Alpha ES640 processors and their memory 
subsystem. There is a substantial improvement in performance due mainly to the faster memory 
subsystem of the Alpha. The Alpha can load stride-1 data from its L2 cache at about twice the 
rate of the Pwr3 and this benefits POP x1 a lot. 

?? The last set of bars show the values of TCS performance, processor and memory subsystem 
speed, network bandwidth and latency, as a ratio to BH’s values. 
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Figure 3: Modeled Contributions to Lemeuix’s (TSC) performance improvement over Blue Horizon on POP x1 at 
16 CPUs 
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POP Performance Sensitivity
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Figure 4: POP Performance Sensitivity for 128 cpu POP x1. Axis are plotted logscale and normalized to 1, thus 
the black quadrilateral represents the {execution time, network bandwidth, network bandwidth, CPU and memory 

subsystem performance} of BH. 
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Navy Layered Ocean Model
• The Navy’s hydrodynamic non-linear primitive 

equation layered ocean circulation model has been 
used at NOARL for more than 10 years for 
simulations of the ocean circulation in the Gulf of 
Mexico, Carribean , Pacific, Atlantic, and other seas 
and oceans. 

Machine Real Time 
(s) 

Predicted Time 
(s) 

% Error 

 PSC’s Lemieux 1818 1816 0.1 
SDSC’s Blue Horizon 4462 4594 -3.0 
NERSC’s Seaborg 4375 4756 -8.7 
TACC’s Longhorn 1944 1872 3.7 

 

Table 3: Predictions of 28 CPU synNLOM for different machines

The results of Table 3 were obtained using 1% sampling. We estimate a full trace would take more than a month 
to obtain on 28 processors! NLOM is reasonably regular and the low error percentages in Table 3 do not seem to 
justify doing a full trace although the code is important enough to DoD that they would provide a month of system 
time for the purpose.
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Figure 5: Breakdown of effect on processor components for synLOM 28 CPU 
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Cobalt
Cobalt60 is an unstructured Euler/Navier-Stokes flow solver that is routinely used to provide quick, 
accurate aerodynamic solutions to complex CFD problems. Cobalt60 handles arbitrary cell types as well 
as hybrid grids that give the user added flexibility in their design environment. It is a robust HPC 
application that solves the compressible Navier-Stokes equations using an unstructured Navier-Stokes 
solver. It uses Detached-Eddy Simulation (DES) which is a combination of Reynolds-averaged Navier-
Stokes( RANS) models and Large Eddy Simulation (LES). 
We ran 7 iterations of a tunnel model of an aircraft wing with a flap and endplates with 2,976,066 cells 
that runs for about ½ hour on 4 CPUs of BH. We used a 2-step trace method to ascertain in the first phase 
that 70% of the time is spent in just one basic block. We then applied 1% sampling to this basic block and 
10% sampling to all the others in the second step of MetaSim tracing. At time of writing we have only 
verified models for PSC Lemeiux at 4, 32, 64, and 128 CPUS with average of less than 5% error.  
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Figure 6: Cobalt 32 CPU Sensitivity Study 
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Cobalt 

Figure 7: Cobalt 32 CPU Sensitivity Study 
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Workload characterization

Larger CPU count POP x1 problems become more network latency sensitive and remain not-very 
bandwidth sensitive. 

synNLOM is somewhat more network bandwidth sensitive than POP because it sends less frequent, larger 
messages. 

Cobalt60 is most sensitive to improvements in the processor performance at this size and this remains true 
at larger processor counts. 

As a trivial example, if one’s workload included more synLOM and less  
POP, one would be willing to spend more $ to improve network bandwidth.  

San Diego Supercomputer Center

Performance Modeling and Characterization LabPMaC
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Conclusion

A systematic method for generating performance models of HPC applications has 
advanced via efforts of this team members and others in the performance modeling 
community  and has begun to make performance modeling systematic, time-tractable, 
and thus generally useful for performance investigations. It is reasonable now to make 
procurement decisions based on the computational demands of the target workload.  

It is reasonable now to tune current systems and influence the implementation of 
near-future systems informed by the computational demands of the target workload. 
Team members have recently used these methods to tune the production system IBM 
Blue Horizon at SDSC and to inform the design of IBM BG/L and begun to look at 
IBM Blue Planet. It is reasonable now to design future systems based on the 
quantified performance implications of hardware features for characterized 
workloads. Members of the team are part icipating in the DARPA HPCS program to 
provide workload characterization and modeling towards this goal.  
 
The goal of ubiquitous performance modeling; to widely disseminate tools and 
methods for modeling is not yet realized but we think it can and should be. 
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